The temporal variability of mesoscale eddies:

Understanding the drivers and predictability of oceanic “storms”
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A “traditional” view of the ocean circulation
(through most of the 20" century)
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Then came Seasat, Geosat, and in 1992, TOPEX/POSEIDON...

Source: Peter Gaube lab (APL-UW), YouTube (https://www.youtube.com/watch?v=pChhyKOpwhl)




Impact of eddies on the ocean

» Nutrients are accumulated in the interior of some eddies, supporting chlorophyll blooms

» Transports heat (and salt, and momentum, etc.) — v'T', v'S', v'V'

Composite chlorophyll anomalies inside

mesoscale eddies — California Current % of total heat transport variance
Gaube et al. (2014) explained by eddy heat transport
Anticyclones Cyclones Volkov et al. (2008)
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Impact of eddies on the ocean

* Nutrients are accumulated in the interior of some eddies, supporting chlorophyll blooms
« Transports heat (and salt, and momentum, etc.) — v'T', v'S', v'V'

« Energy transfer between large and small scales
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A measure of eddy strength

Eddy kinetic energy (EKE)

« u'and v'are the components of the velocity vector, with the time-mean velocity removed

Altimetry missions: __

TOPEX/POSEIDON
ERS-1

Jason-1

ERS-2
OSTM/Jason-2
ENVISAT
Jason-3
SARAL/AltIKa
Cryosat-2
Sentinel-3A
HY-2A

EKE = 0.5*[(u)2 + (v)2]

— SSALTO/ DUACS:

« daily, 1/4° resolution
» 24+ years of record

(1993-2017)

merged multi-mission
gridded altimetry dataset
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Time-mean EKE, from gridded altimetry data (SSALTO/DUACS)
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The Subtropical Southern Indian Ocean (SSIO) and eddy variability

EKE time mean (cm?/s?)
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Subtropical Southern Indian Ocean EKE and sea level variability

SSH and EKE anomalies from altimetry,
averaged in the Leeuwin Current west of Australia

—— SSH anomaly
—— EKE anomaly
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(Leeuwin Current region)



Research guestions — SSIO eddy variability

Given we know that...
 Mesoscale eddies are major contributors to ocean heat/salt transport, energy transfer
between scales, and biological productivity

« SSIO eddies may be influenced by sea level variations locally and in the Pacific

We seek the answers to these research questions:
 Which mechanism(s) explain the close relationship between SSH and EKE on
interannual/decadal timescales in parts of the SSIO?
...with possible implications for long-term trends in SSH & EKE

 Which climate and/or interior ocean forcings control the interannual variability of
EKE in the SSIO? ...with possible implications for heat/tracer transport variability & predictability



Separation of oceanic motions by spatial scales

In order to focus on dynamics at mesoscales (tens of km to ~200 km), we define a measure of
EKE that distinguishes between mesoscale and large-scale motions in the ocean:

* Low-pass filter SSH (or SLA with the time mean removed) in both x and y

» Use 6° wavelengths (~670 km) as the cutoff threshold
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» The low-passed field represents larger-scale motions
* Residual represents mesoscale motions (such as eddies)

« EKE can be computed from each individual field, e.g.,
2

k X 27 (SLAmeso)
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Distribution of EKE associated with large scales and mesoscales
Mesoscale EKE time mean (cm? s2)

meso

Low-passed EKE,, time mean (cm? s72)
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Robust positive correlation between SLA and EKE at all scales, but mostly in eastern SSIO



Hypothesis: Pacific forcing influences both SSH and EKE variations, instead of SSH

forcing EKE
The correlation of SLA in the tropical Pacific leading mesoscale EKE in the eastern SSIO

implies that Pacific dynamics are an important influence on SSIO eddy activity

Correlation of SLA leading box-averaged EKE, .,
6 month lead time
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Possible mechanisms for Pacific influence on eastern SSIO eddy activity:

Coastal wave
propagation west
of Australia

Changes to
horizontal & vertical
shear in/near LC

Tropical Pacific
sea level

Changes to eddy
generation in
eastern SSIO

More/less
barotropic &
baroclinic instability

Leeuwin Current
changes

Strongly implies ENSO is an influence /
Southern Annular Mode

Jia et al. (2011) found a significant correlation with the Nifio3.4 index, which was not further
explored in that study

They did attribute SSIO EKE variability to wind stress curl changes related to the Southern Annular
Mode (SAM)



Optimum correlations of Nino3.4 index leading mesoscale EKE

What is an “optimum?” correlation?
* Correlate the time variation of a single index with the time variation in regional maps of another quantity

+ Plot the maximum magnitude correlation coefficient and its associated lag
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Optimum correlations of Nino3.4 index leading mesoscale EKE

What is an “optimum?” correlation?
Correlate the time variation of a single index with the time variation in regional maps of another quantity

Plot the maximum magnitude correlation coefficient and its associated lag
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Results: Optimum correlation is robustly negative east of 100°E; mostly insignificant elsewhere

El Nifo = lower mesoscale EKE near Australia

* La Nifia = higher mesoscale EKE near Australia
Lag of EKE,,., relative to Nifio3.4: several months near the coast; >1 year further offshore




Optimum correlations of Southern Annular Mode (SAM) index leading mesoscale EKE
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Generally negative correlations with EKE,, .., in the SSIO band, but only significant in scattered regions
* According to Jia et al. (2011), mechanism for SAM influence is related to wind stress curl just
west of Australia, so this may not be influential in the rest of the SSIO
(Optimum)

Optimum lags do not show clear spatial progressions



So we have established:

v' That the SLA-mesoscale EKE relationship in the eastern SSIO
(near Australia) appears to be related to Pacific forcing
- Pacific forcing influences both SSIO sea level anomalies
and SSIO EKE variations (confirmation of hypothesis)

v' That ENSO has a strong influence on levels of mesoscale
eddy activity in the eastern SSIO

-  ElI Nifio leads to a weaker Leeuwin Current and less eddy
generation

-  La Nina drives a stronger Leeuwin Current and more eddy
generation

But we have not established:

? The mechanism(s) responsible for explaining substantial EKE
variability in the central and western SSIO

Hovmoller diagram of mesoscale EKE,
averaged 25°-20° S
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What controls mesoscale EKE variability in the central/western SSIO?

Optimum correlate EKE, ., With itself
Average EKE,, ., in @ box in the central/western SSIO, and lag correlate with (point) EKE,, .,

values
Objective: look to see if eddy energy propagation (internal to the ocean) is implied by the lagged

leading box-averaged EKEmeso
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* Mesoscale eddies generally propagate westward, with slight north/south deflections depending on their

sign (cyclonic or anti-cyclonic)
» So could there be net mesoscale energy propagation towards the northwest in this region?
SW Australia EKE, .., leads W

8 Cent SSIO EKE, ., by ~2-3 years
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Evidence for a non-westward pathway of eddy (energy) propagation

From our study:

Hovmoller of EKE es
variations along zonal path
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Evidence for a non-westward pathway of eddy (energy) propagation

From our study: EKEpes, anomaly =
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From Chelton et al. (2011):

Tracks of eddies with lifetimes greater than 2 years
Anticyclonic tracks
Cyclonic tracks
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Long-lived anticyclonic eddies in this region do
propagate along the oblique path, though cyclonic
eddies tend to propagate southwestward instead



Future work: how is EKE related to SSH globally?

« On aglobal scale, as sea level is rising, eddy activity also seems to be changing in recognizable
geographic patterns

Also locations

. where EKE
v trend is
v positive
SSH-EKE interannual/decadal '8
correlation (detrended), O la EE— -
( ) g : e Correlallor(t)coeﬂlmem ie 1 EKE trend (% yr'l)’ 1993—2016
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* The EKE trend map has some resemblance
to the SSH-EKE anomaly correlation map
(which has been detrended to consist of
variations at timescales <24 years)



Conclusions, and future directions

SSIO interannual/decadal eddy variability
*  Which mechanism(s) explain the close relationship between SSH and EKE on interannual/decadal
timescales in parts of the SSIO?
v Tropical Pacific sea level (forced by winds related to ENSO) drives both sea level and
mesoscale EKE variations near the Australian coast

« Which climate and/or interior/ocean forcing pathways control the interannual variability of EKE in the
SSIO?
v" ENSO is the primary climate driver of mesoscale eddy generation and variability in the
Leeuwin Current region
v Further west in the interior ocean, eddy variability is influenced by northwestward propagation
of mesoscale energy

Eddy variability in the global oceans

* There is a positive correlation of EKE with SSH at many higher latitude locations

« May be related to the positive long-term trend in EKE at many of these same locations in the
satellite altimetry record.
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Hypothesis 1: The interannual/decadal variability of EKE in the SSIO is driven by
variations in the number of anticyclonic (warm-core) eddies NN
> More AC eddies > EKE increases = SSH increases also WG

Sea surface height (SSH) trend (cm yr?t), 1993-2016
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* Highly positive “tracks” in long-term SSH trend look like eddy propagation pathways



Mesoscale eddies and EKE — the eddy counting approach

» Isern-Fontanet et al. (2003; 2006), Morrow et al. (2004), and Chelton et al. (2007; 2011)
have used algorithms to identify individual mesoscale eddies

« The Chelton et al. (2011) method identifies eddies as closed, compact contours of spatially
high-passed sea level anomaly (SSH minus its time mean)

% of total EKE explained by mesoscale eddies

Spatially HP sea level anomaly, 28 Aug. 1996
P Y _ v s (lifetime 24 weeks)

Percent 30%-60% of total EKE
explained by individual eddies



Do anticyclonic eddy variations explain SSH and EKE variability?

Histograms of cyclonic and anticyclonic eddies identified using the
Chelton et al. (2011) method, during low and high EKE periods
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